Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes

نویسندگان

  • Galuh D N Astuti
  • L Ingeborgh van den Born
  • M Imran Khan
  • Christian P Hamel
  • Béatrice Bocquet
  • Gaël Manes
  • Mathieu Quinodoz
  • Manir Ali
  • Carmel Toomes
  • Martin McKibbin
  • Mohammed E El-Asrag
  • Lonneke Haer-Wigman
  • Chris F Inglehearn
  • Graeme C M Black
  • Carel B Hoyng
  • Frans P M Cremers
  • Susanne Roosing
چکیده

Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration

Background Accurate clinical diagnosis and prognosis of retinal degeneration can be aided by the identification of the disease-causing genetic variant. It can confirm the clinical diagnosis as well as inform the clinician of the risk for potential involvement of other organs such as kidneys. It also aids in genetic counseling for affected individuals who want to have a child. Finally, knowledge...

متن کامل

Application of Whole Exome Sequencing in Six Families with an Initial Diagnosis of Autosomal Dominant Retinitis Pigmentosa: Lessons Learned

This study aimed to identify the genetics underlying dominant forms of inherited retinal dystrophies using whole exome sequencing (WES) in six families extensively screened for known mutations or genes. Thirty-eight individuals were subjected to WES. Causative variants were searched among single nucleotide variants (SNVs) and insertion/deletion variants (indels) and whenever no potential candid...

متن کامل

Homozygosity mapping reveals novel and known mutations in Pakistani families with inherited retinal dystrophies

Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigr...

متن کامل

Targeted sequencing of 179 genes associated with hereditary retinal dystrophies and 10 candidate genes identifies novel and known mutations in patients with various retinal diseases.

PURPOSE Hereditary retinal dystrophies (HRDs) are a group of monogenic diseases characterized by an irreversible loss of photoreceptors. HRDs exhibit significant genetic and clinical heterogeneities challenging traditional techniques for determining disease-causal mutations. This study aims to develop an efficient molecular diagnostic platform for HRDs, and to determine the genetic basis for 25...

متن کامل

The Molecular Basis of Retinal Dystrophies in Pakistan

The customary consanguineous nuptials in Pakistan underlie the frequent occurrence of autosomal recessive inherited disorders, including retinal dystrophy (RD). In many studies, homozygosity mapping has been shown to be successful in mapping susceptibility loci for autosomal recessive inherited disease. RDs are the most frequent cause of inherited blindness worldwide. To date there is no compre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018